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ABSTRACT 
We have combined the benefits of the fully depleted TriGate 

transistor architecture with high-k gate dielectrics, metal gate 
electrodes and strain engineering.  High performance NMOS and 
PMOS trigate transistors are demonstrated with IDSAT=1.4mA/um and 
1.1mA/um respectively (IOFF=100nA/um, VCC=1.1V and LG=40nm) 
with excellent short channel effects (SCE) – DIBL and subthreshold 
swing, ∆S.  The contributions of strain, the <100> vs. <110> substrate 
orientations, high-k gate dielectrics, and low channel doping are 
investigated for a variety of channel dimensions and FIN profiles.  We 
observe no evidence of early parasitic corner transistor turn-on in the 
current devices which can potentially degrade ION-IOFF and ∆S. 

I. INTRODUCTION 
In order to continue scaling according to Moore’s Law beyond the 

32nm technology node, a number of fully depleted devices have been 
proposed to deal with SCE degradation including the DST, FINFET, 
Surround Gate, MBCFET, and TriGate [1-4].  The Trigate transistor 
architecture introduces the fewest changes to conventional planar 
transistor processing.  In this work the combination of ultra thin high-k 
gate dielectric, near mid-gap metal gate workfunction, low doping in 
the channel and optimized FIN dimensions enable us to fully enhance 
the gate to channel coupling in TriGate devices for much improved 
short channel effects.  We implement aggressively scaled spacers, ultra 
shallow abrupt junctions, raised source/drains, strain engineering and 
high aspect ratio silicon FINS to improve REXT. 

II. EXPERIMENT 
TriGate FIN patterning is achieved using a reactive ion etching 

process, optimized to achieve highly vertical sidewall profiles for 
improved SCE control as discussed in section III.  The <100> 
substrates are notch oriented so as to expose the <110> plane on the 
two adjacent vertical sidewalls of the Trigate FIN.  The FIN height, 
HSi, and FIN width, WSi, define the total width of the device as WT = 
2xHSi + WSi (Fig. 1).  The gate stack is formed by atomic layer 
deposition (ALD) of a 20A HfO2 high-k dielectric, followed by PVD 
metal deposition which sets the workfunction near mid-gap and CVD 
deposited polysilicon to complete the gate electrode.  The highly 
vertical yet selective gate patterning is achieved by a combination of 
dry and wet etch chemistries which prevent notching under the gate, 
gate profile flare, or breakthrough during the significant over-etch 
required to clear the polysilicon and metal stringers surrounding the 
FIN. Following tip-extension implant and spacer formation we 
introduce selective silicon (NMOS) and embedded SiGe (PMOS) 
epitaxy for raised source/drains.  Tensile strained nitride layers 
patterned over NMOS transistors are also investigated to enhance 
electron mobility [5]. 

III. RESULTS & ANALYSIS  
The impact of the silicon FIN etch used to define WSi is illustrated 

in Figs. 1a, 1b & 1c.  If the body dimensions taper outwards towards 
the bottom of the FIN (Fig. 1a) we observe a marked increase in DIBL 
and ∆S, Figs. 2a & 2b, as a function of Leff/Weff.  Here Leff is defined 
as the physical gate length, LG, minus twice the tip overlap region 
while Weff=WSi+2{εSi/εOX}* TOX.  This increase in SCE’s arises from 

the weaker electrostatic gate coupling by the side gates as WSi widens 
near the bottom of the FIN.  In the extreme case of a notched profile 
(Fig.1b) SCE continue to improve but at the expense of yield due to 
polysilicon/metal stringers along the FIN perimeter.  In Fig. 3 we 
illustrate that by careful optimization of the vertical channel dopant 
profile one can significantly improve SCE’s as a function of Leff/Weff.   
The near mid-gap workfunction allows us to set the VT of the TriGate 
devices with a significantly lower dopant concentration (1017cm-3) in 
the channel as compared to the planar bulk Si technology.  This in turn 
enables stronger gate coupling, improved channel mobility and volume 
inversion to occur.  The combination of a) lower doping in the 
channel, b) the 4nm top corner radius, RC, and c) ultra-thin TOX from 
the high-k dielectric/metal gate stack eliminate any early parasitic 
corner device turn-on [6-8]. 

Next, we illustrate the impact of the <110> sidewall surface on the 
carrier mobility as a function of inversion charge density, QINV.  In 
Figure 4a, only a minimal 8% degradation is observed in the high field 
electron mobility for the <110> dominated Trigate device compared to 
planar <100>.  In contrast, Fig.4b illustrates a 100% increase in hole 
mobility for the <110> transport plane compared to a <100> planar 
device. 

For a given FIN width, WSi=25nm, and increasing HSi, Fig. 5 
demonstrates the improvement in normalized RD-Lin due to reduced 
current crowding with increasing FIN cross-sectional area.  The 
increased HSi also leads to a correspondingly larger contact area and 
hence a lower contact resistance.  Current spreading is further 
facilitated through the use of a raised silicon source/drain epitaxy.  
Finally, a conformal tensile strained nitride film is applied to enhance 
electron mobility in the channel.  Figure 6 shows a 35% increase in 
normalized short channel mobility for tensile versus unstrained nitride 
layers. 

For PMOS Trigates we introduce in-situ boron doped SiGe raised 
source/drains as illustrated in x and y direction cross-sections of Figs. 
7a & 7b.  This process element improves the contact resistance due to 
the lower valence band energy level for SiGe, reduces current 
crowding and enhances the bulk source/drain conductivity.  This is 
illustrated in Figs. 8a & 8b where we observe a 40% increase in IDLin 
and a corresponding 40% decrease in RDSLin if the SiGe is embedded 
into the channel region via an undercut etch prior to epi deposition 
versus the raised source/drain SiGe case without the undercut etch.  
The larger lattice constant of the SiGe film can potentially also 
introduce uniaxial compressive strain for improved hole mobility.  The 
resultant Ion-Ioff, ID-VG, and ID-VD characteristics for NMOS and 
PMOS Trigate devices are presented in Figs. 9-11 with their extracted 
SCE characteristics – IOFF, ∆SSat, ∆SLin & DIBL.  

IV. CONCLUSIONS 
Fully depleted Trigate devices with high-k gate dielectrics, mid-gap 

metal gates, strained channel engineering and epitaxially grown raised 
source/drains have been successfully demonstrated.  Excellent 
performance is achieved with NMOS and PMOS IDsat exceeding 
1.4mA/µm and 1.1mA/µm respectively and well controlled SCE’s.  
We attribute this to careful optimization of FIN dimensions, tip 
extensions and channel doping profiles, ultra-thin TOX and by taking 
advantage of the improved hole mobility on the <110> plane. 
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Fig. 5  RDSLin as a function of   Fig. 6 Normalized electron mobility 

increasing fin height , HSi. for tensile versus neutral strain.
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Fig. 7a X-dir. cross-section of PMOS Trigate Fig. 7b Y-dir. cross-section of PMOS 
with SiGe raised source/drains Trigate with SiGe raised source/drain 
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Fig. 11a ID–VD family of curves    Fig. 11b ID-VD family of curves for a
 for an NMOS TriGate device.    PMOS Trigate device. 
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with & without undercut etch.  epi with & without undercut etch
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Fig. 4a  Electron mobility comparison  Fig. 4b  Hole mobility comparison of 
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Fig. 2a  Subthreshold swing, ∆SSat for a  Fig. 2b  DIBL comparison for a 
vertical vs. tapered fin etch vertical vs. tapered FIN etch
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Fig. 1a Fig. 1b Fig. 1c
Fig. 1  Various FIN etch profiles illustrating from left to right: 1a) the 

tapered, 1b) notched and 1c)vertical FIN profiles.  
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